
Notes by: - Rajan Shukla

1.1 History and Advantages of PHP, Syntax of PHP.

PHP started out as a small open source project that evolved as more and more people found
out how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back in 1994.

● PHP is a recursive acronym for "PHP: Hypertext Preprocessor".
● PHP is a server side scripting language that is embedded in HTML. It is used to manage

dynamic content, databases, session tracking, even build entire e-commerce sites.
● It is integrated with a number of popular databases, including MySQL, PostgreSQL,

Oracle, Sybase, Informix, and Microsoft SQL Server.
● PHP is pleasingly zippy in its execution, especially when compiled as an Apache module

on the Unix side. The MySQL server, once started, executes even very complex queries
with huge result sets in record-setting time.

● PHP supports a large number of major protocols such as POP3, IMAP, and LDAP. PHP4
added support for Java and distributed object architectures (COM and CORBA), making
n-tier development a possibility for the first time.

● PHP is forgiving: PHP language tries to be as forgiving as possible.
● PHP Syntax is C-Like.

Advantages of PHP :

1. Most important advantage of PHP is that it’s open source and freed from cost. It is
often downloaded anywhere and readily available to use for web applications.

2. It is platform independent. PHP based applications can run on any OS like UNIX,
Linux and windows, etc.

3. Applications can easily be loaded which are based on PHP and connected to a
database. it’s mainly used due to its faster rate of loading over slow internet and
speed than other programming languages.

4. It has less learning curve, because it is straightforward and straightforward to use. If
a private knows C programming can easily work on PHP.

Notes by: - Rajan Shukla

5. It is more stable from a few years with assistance of providing continuous support to
various versions.

6. It helps in reusing an equivalent code and no got to write lengthy code and
sophisticated structure for the event of web applications.

7. It helps in managing code easily.
8. It has powerful library support to use various function modules for data

representation.
9. PHP’s built-in database connection modules help in connecting databases easily and

reduce trouble and time for development of web applications and content based
sites.

10. Popularity of PHP gave rise to various communities of developers, a fraction of which
may be potential candidates for hire.

Basic PHP Syntax

A PHP script can be placed anywhere in the document. A PHP script starts with <?php and ends
with ?>:

<?php

// PHP code goes here

?>
The default file extension for PHP files is ".php".A PHP file normally contains HTML tags, and
some PHP scripting code.

1.2 Variable, Data type, expression and operators, Constants
1. Variable: -In PHP, a variable is declared using a $ sign followed by the variable name.
Here, some important points to know about variables:

● As PHP is a loosely typed language, so we do not need to declare the data types of the
variables. It automatically analyzes the values and makes conversions to its correct data
type.

● After declaring a variable, it can be reused throughout the code.

● Assignment Operator (=) is used to assign the value to a variable.

Syntax of declaring a variable in PHP is given below:

1. $variablename=value;

Rules for declaring PHP variable:

Notes by: - Rajan Shukla

● A variable must start with a dollar ($) sign, followed by the variable name.

● It can only contain alpha-numeric characters and underscore (A-z, 0-9, _).

● A variable name must start with a letter or underscore (_) character.

● A PHP variable name cannot contain spaces.

● One thing to be kept in mind that the variable name cannot start with a number or
special symbols.

● PHP variables are case-sensitive, so $name and $NAME both are treated as different
variables.

PHP Variable: Declaring string, integer, and float

Let's see the example to store string, integer, and float values in PHP variables.

File: variable1.php

1. <?php
2. $str="hello string";
3. $x=200;
4. $y=44.6;
5. echo "string is: $str
";
6. echo "integer is: $x
";
7. echo "float is: $y
";
8. ?>

Output:

string is: hello string

integer is: 200

float is: 44.6

PHP Data Types

PHP data types are used to hold different types of data or values. PHP supports 8 primitive data types that can
be categorized further in 3 types:

1. Scalar Types (predefined)

2. Compound Types (user-defined)

Notes by: - Rajan Shukla

3. Special Types

PHP Data Types: Scalar Types

It holds only a single value. There are 4 scalar data types in PHP.

1. boolean

2. integer

3. float

4. string

PHP Data Types: Compound Types

It can hold multiple values. There are 2 compound data types in PHP.

1. array

2. object

PHP Data Types: Special Types

There are 2 special data types in PHP.

1. resource

2. NULL

PHP Boolean

Booleans are the simplest data type works like switch. It holds only two values: TRUE (1) or FALSE (0). It is
often used with conditional statements. If the condition is correct, it returns TRUE otherwise FALSE.

Example:

1. <?php

2. if (TRUE)

3. echo "This condition is TRUE.";

4. if (FALSE)

https://www.javatpoint.com/php-data-types#boolean
https://www.javatpoint.com/php-data-types#integer
https://www.javatpoint.com/php-data-types#float
https://www.javatpoint.com/php-data-types#string
https://www.javatpoint.com/php-data-types#array
https://www.javatpoint.com/php-data-types#object
https://www.javatpoint.com/php-data-types#resource
https://www.javatpoint.com/php-data-types#NULL

Notes by: - Rajan Shukla

5. echo "This condition is FALSE."; 6.

 ?>

Output:

This condition is TRUE.

PHP Integer

Integer means numeric data with a negative or positive sign. It holds only whole numbers, i.e., numbers
without fractional part or decimal points.

Rules for integer:

● An integer can be either positive or negative.

● An integer must not contain decimal point.

● Integer can be decimal (base 10), octal (base 8), or hexadecimal (base 16).

● The range of an integer must be lie between 2,147,483,648 and 2,147,483,647 i.e., -2^31 to 2^31.

Example:

1. <?php

2. $dec1 = 34;

3. $oct1 = 0243;

4. $hexa1 = 0x45;

5. echo "Decimal number: " .$dec1. "</br>";

6. echo "Octal number: " .$oct1. "</br>";

7. echo "HexaDecimal number: " .$hexa1. "</br>"; 8.

 ?>

Output:

Decimal number: 34

Octal number: 163

Hexadecimal number: 69

Notes by: - Rajan Shukla

PHP Float

A floating-point number is a number with a decimal point. Unlike integer, it can hold numbers with a
fractional or decimal point, including a negative or positive sign.

Example:

1. <?php

2. $n1 = 19.34;

3. $n2 = 54.472;

4. $sum = $n1 + $n2;

5. echo "Addition of floating numbers: " .$sum;

6. ?>

Output:

Addition of floating numbers: 73.812

PHP String

A string is a non-numeric data type. It holds letters or any alphabets, numbers, and even special characters.

String values must be enclosed either within single quotes or in double quotes. But both are treated
differently. To clarify this, see the example below:

Example:

1. <?php

2. $company = "Javatpoint";

3. //both single and double quote statements will treat different

4. echo "Hello $company";

5. echo "</br>";

6. echo 'Hello $company';

Notes by: - Rajan Shukla

7. ?>

Output:

Hello Javatpoint

Hello $company

PHP Array

An array is a compound data type. It can store multiple values of same data type in a single variable.

Example:

1. <?php

2. $bikes = array ("Royal Enfield", "Yamaha", "KTM");

3. var_dump($bikes); //the var_dump() function returns the datatype and values

4. echo "</br>";

5. echo "Array Element1: $bikes[0] </br>";

6. echo "Array Element2: $bikes[1] </br>";

7. echo "Array Element3: $bikes[2] </br>"; 8.

 ?>

Output:

array(3) { [0]=> string(13) "Royal Enfield" [1]=> string(6) "Yamaha" [2]=> string(3) "KTM" }

Array Element1: Royal Enfield

Array Element2: Yamaha

Array Element3: KTM

Notes by: - Rajan Shukla

You will learn more about array in later chapters of this tutorial.

PHP object

Objects are the instances of user-defined classes that can store both values and functions. They must be
explicitly declared.

Example:

1. <?php

2. class bike {

3. function model() {

4. $model_name = "Royal Enfield";

5. echo "Bike Model: " .$model_name;

6. }

7. }

8. $obj = new bike();

9. $obj -> model();

10. ?>

Output:

Bike Model: Royal Enfield

This is an advanced topic of PHP, which we will discuss later in detail.

PHP Resource

Resources are not the exact data type in PHP. Basically, these are used to store some function calls or
references to external PHP resources. For example - a database call. It is an external resource.

This is an advanced topic of PHP, so we will discuss it later in detail with examples.

PHP Null

Notes by: - Rajan Shukla

Null is a special data type that has only one value: NULL. There is a convention of writing it in capital letters as
it is case sensitive.

The special type of data type NULL defined a variable with no value.

Example:

1. <?php

2. $nl = NULL;

3. echo $nl; //it will not give any output 4.

 ?>

Output:

Type of operators.

● Arithmetic Operators

● Comparison Operators

● Logical (or Relational) Operators

● Assignment Operators

● Conditional (or ternary) Operators

Lets have a look on all operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by PHP language −

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by de-numerator B / A will give 2

https://www.tutorialspoint.com/php/php_arithmatic_operators_examples.htm

Notes by: - Rajan Shukla

% Modulus Operator and remainder of after an integer
division

B % A will give 0

++ Increment operator, increases integer value by one A++ will give 11

-- Decrement operator, decreases integer value by one A-- will give 9

Comparison Operators

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

== Checks if the value of two operands are equal or not, if yes then
condition becomes true.

(A == B) is
not true.

!= Checks if the value of two operands are equal or not, if values are
not equal then condition becomes true.

(A != B) is
true.

> Checks if the value of left operand is greater than the value of right
operand, if yes then condition becomes true.

(A > B) is
not true.

< Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

(A < B) is
true.

>= Checks if the value of left operand is greater than or equal to the
value of right operand, if yes then condition becomes true.

(A >= B) is
not true.

<= Checks if the value of left operand is less than or equal to the value
of right operand, if yes then condition becomes true.

(A <= B) is
true.

Logical Operators

https://www.tutorialspoint.com/php/php_comparison_operators_examples.htm

Notes by: - Rajan Shukla

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

and Called Logical AND operator. If both the operands are true then
condition becomes true.

(A and B)
is true.

or Called Logical OR Operator. If any of the two operands are non zero
then condition becomes true.

(A or B) is
true.

&& Called Logical AND operator. If both the operands are non zero then
condition becomes true.

(A && B)
is true.

|| Called Logical OR Operator. If any of the two operands are non zero
then condition becomes true.

(A || B) is
true.

! Called Logical NOT Operator. Use to reverses the logical state of its
operand. If a condition is true then Logical NOT operator will make
false.

!(A && B)
is false.

Assignment Operators

There are following assignment operators supported by PHP language −

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from right side
operands to left side operand

C = A + B will assign
value of A + B into
C

+= Add AND assignment operator, It adds right operand to
the left operand and assign the result to left operand

C += A is equivalent
to C = C + A

https://www.tutorialspoint.com/php/php_logical_operators_examples.htm
https://www.tutorialspoint.com/php/php_assignment_operators_examples.htm

Notes by: - Rajan Shukla

-= Subtract AND assignment operator, It subtracts right
operand from the left operand and assign the result to left
operand

C -= A is equivalent
to C = C - A

*= Multiply AND assignment operator, It multiplies right
operand with the left operand and assign the result to left
operand

C *= A is equivalent
to C = C * A

/= Divide AND assignment operator, It divides left operand
with the right operand and assign the result to left
operand

C /= A is equivalent
to C = C / A

%= Modulus AND assignment operator, It takes modulus using
two operands and assign the result to left operand

C %= A is
equivalent to C = C
% A

Conditional Operator

There is one more operator called conditional operator. This first evaluates an expression for a
true or false value and then execute one of the two given statements depending upon the
result of the evaluation. The conditional operator has this syntax −

Show Examples

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X : Otherwise value Y

Operators Categories

All the operators we have discussed above can be categorised into following categories −

● Unary prefix operators, which precede a single operand.
● Binary operators, which take two operands and perform a variety of arithmetic and

logical operations.
● The conditional operator (a ternary operator), which takes three operands and evaluates

either the second or third expression, depending on the evaluation of the first
expression.

● Assignment operators, which assign a value to a variable.

Precedence of PHP Operators

https://www.tutorialspoint.com/php/php_conditional_operator_examples.htm

Notes by: - Rajan Shukla

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example,
the multiplication operator has higher precedence than the addition operator −

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher
precedence than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

PHP Constants

Notes by: - Rajan Shukla

PHP constants are name or identifier that can't be changed during the execution of the script
except for magic constants, which are not really constants. PHP constants can be defined by 2
ways:

1. Using define() function

2. Using const keyword

Constants are similar to the variable except once they are defined, they can never be undefined
or changed. They remain constant across the entire program. PHP constants follow the same
PHP variable rules. For example, it can be started with a letter or underscore only.

Conventionally, PHP constants should be defined in uppercase letters.

PHP Constants
PHP constants are names or identifiers that can't be changed during the execution of the script
except for magic constants, which are not really constants. PHP constants can be defined by 2
ways:

Using define() function
Using const keyword
Constants are similar to the variable except once they are defined, they can never be undefined
or changed. They remain constant across the entire program. PHP constants follow the same
PHP variable rules. For example, it can be started with a letter or underscore only.

Conventionally, PHP constants should be defined in uppercase letters.

Note: Unlike variables, constants are automatically global throughout the script.
PHP constant: define()
Use the define() function to create a constant. It defines constant at runtime. Let's see the
syntax of define() function in PHP.

define(name, value, case-insensitive)
name: It specifies the constant name.
value: It specifies the constant value.
case-insensitive: Specifies whether a constant is case-insensitive. Default value is false. It means
it is case sensitive by default.
Let's see the example to define PHP constant using define().

File: constant1.php

Note: Unlike variables, constants are automatically global throughout the script.

https://www.javatpoint.com/php-magic-constants

Notes by: - Rajan Shukla

<?php
define("MESSAGE","Hello JavaTpoint PHP");
echo MESSAGE;
?>
Output:

Hello JavaTpoint PHP
Create a constant with case-insensitive name:

File: constant2.php

<?php
define("MESSAGE","Hello JavaTpoint PHP",true);//not case sensitive
echo MESSAGE, "</br>";
echo message;
?>
Output:

Hello JavaTpoint PHP
Hello JavaTpoint PHP
File: constant3.php

<?php
define("MESSAGE","Hello JavaTpoint PHP",false);//case sensitive
echo MESSAGE;
echo message;
?>
Output:

Hello JavaTpoint PHP
Notice: Use of undefined constant message - assumed 'message'
in C:\wamp\www\vconstant3.php on line 4
message
PHP constant: const keyword

PHP introduced a keyword const to create a constant. The const keyword defines constants at
compile time. It is a language construct, not a function. The constant defined using const
keyword are case-sensitive.

File: constant4.php

<?php
const MESSAGE="Hello const by JavaTpoint PHP";
echo MESSAGE;
?>
Output:

Notes by: - Rajan Shukla

Hello const by JavaTpoint PHP
Constant() function
There is another way to print the value of constants using constant() function instead of using
the echo statement.

Syntax

The syntax for the following constant function:

constant (name)
File: constant5.php

<?php

define("MSG", "JavaTpoint");
echo MSG, "</br>";
echo constant("MSG");
//both are similar

?>
Output:

JavaTpoint
JavaTpoint

1.3 PHP provides us with four conditional statements:

● if statement
● if…else statement
● if…elseif…else statement
● switch statement

Let us now look at each one of these in details:

if Statement: This statement allows us to set a condition. On being TRUE, the following block of
code enclosed within the if clause will be executed.
Syntax :
if (condition){

// if TRUE then execute this code
}

1.

Example:

Notes by: - Rajan Shukla

<?php
$x = 12;

if ($x > 0) {

echo "The number is positive";
}
?>

Output:
The number is positive

2.

Flowchart:

if…else Statement: We understood that if a condition will hold i.e., TRUE, then the block of
code within if will be executed. But what if the condition is not TRUE and we want to perform
an action? This is where else comes into play. If a condition is TRUE then if block gets executed,
otherwise else block gets executed.
Syntax:
if (condition) {

// if TRUE then execute this code

Notes by: - Rajan Shukla

}
else{

// if FALSE then execute this code
}

3.

Example:

<?php
$x = -12;

if ($x > 0) {

echo "The number is positive";
}

else{

echo "The number is negative";
}
?>

Output:
The number is negative

Notes by: - Rajan Shukla

4.

Flowchart:

if…elseif…else Statement: This allows us to use multiple if…else statments. We use this when
there are multiple conditions of TRUE cases.
Syntax:
if (condition) {

// if TRUE then execute this code
}
elseif {

// if TRUE then execute this code
}
elseif {

// if TRUE then execute this code
}
else {

// if FALSE then execute this code
}

5.

Example:

Notes by: - Rajan Shukla

<?php
$x = "August";

if ($x == "January") {

echo "Happy Republic Day";
}

elseif ($x == "August") {

echo "Happy Independence Day!!!";
}

else{

echo "Nothing to show";
}
?>

Output:

Happy Independence Day!!!

Notes by: - Rajan Shukla

6.

Flowchart:

7. switch Statement: The “switch” performs in various cases i.e., it has various cases to
which it matches the condition and appropriately executes a particular case block. It
first evaluates an expression and then compares with the values of each case. If a
case matches then the same case is executed. To use switch, we need to get familiar
with two different keywords namely, break and default.

1. The break statement is used to stop the automatic control flow into the
next cases and exit from the switch case.

2. The default statement contains the code that would execute if none of
the cases match.

Notes by: - Rajan Shukla

Syntax:
switch(n) {

case statement1:
code to be executed if n==statement1;
break;

case statement2:
code to be executed if n==statement2;
break;

case statement3:
code to be executed if n==statement3;
break;

case statement4:
code to be executed if n==statement4;
break;

......
default:

code to be executed if n != any case;

8.

Example:

Notes by: - Rajan Shukla

<?php
$n = "February";

switch($n) {

case "January":
echo "Its January";
break;

case "February":
echo "Its February";
break;

case "March":
echo "Its March";
break;

case "April":
echo "Its April";
break;

case "May":
echo "Its May";
break;

case "June":
echo "Its June";
break;

case "July":
echo "Its July";
break;

case "August":
echo "Its August";
break;

case "September":
echo "Its September";
break;

case "October":
echo "Its October";
break;

case "November":
echo "Its November";
break;

case "December":
echo "Its December";
break;

default:
echo "Doesn't exist";

}
?>

Notes by: - Rajan Shukla

Output:
Its February

9.

Flowchart:

Notes by: - Rajan Shukla

Ternary Operators

In addition to all this conditional statements, PHP provides a shorthand way of writing if…else,
called Ternary Operators. The statement uses a question mark (?) and a colon (:) and takes three
operands: a condition to check, a result for TRUE and a result for FALSE.

Syntax:

(condition) ? if TRUE execute this : otherwise execute this;

Example:

<?php
$x = -12;

if ($x > 0) {

echo "The number is positive \n";
}
else {

echo "The number is negative \n";
}

// This whole lot can be written in a
// single line using ternary operator
echo ($x > 0) ? 'The number is positive' :

'The number is negative';
?>

Output:

The number is negative
The number is negative

1.4 Loop Structure in Php

Loops in PHP are used to execute the same block of code a specified number of times. PHP
supports the following four loop types.

● for − loops through a block of code a specified number of times.
● while − loops through a block of code if and as long as a specified condition is true.
● do...while − loops through a block of code once, and then repeats the loop as long as a

special condition is true.
● foreach − loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement or
a block of statements.

Notes by: - Rajan Shukla

Syntax

for (initialization; condition; increment){

}

The initializer is used to set the start value for the counter of the number of loop iterations. A
variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two variables
on each pass of the loop −

Live Demo
<html>
 <body>

 <?php

for($i = 0; $i<5; $i++) {
$a += 10;
$b += 5;

}

 echo ("At the end of the loop a = $a and b = $b");

$a = 0;
$b = 0;

code to be executed;

http://tpcg.io/n7ropq

Notes by: - Rajan Shukla

 ?>

 </body>
</html>

This will produce the following result −

At the end of the loop a = 50 and b = 25

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed
the test expression will again be evaluated and the loop will continue until the test expression
is found to be false.

Syntax

while (condition) {

}

Example

code to be executed;

Notes by: - Rajan Shukla

code to be executed;

This example decrements a variable value on each iteration of the loop and the counter
increments until it reaches 10 when the evaluation is false and the loop ends.

Live Demo
<html>
 <body>

 <?php
 $i = 0;
 $num = 50;

 echo ("Loop stopped at i = $i and num = $num");
 ?>

 </body>
</html>

This will produce the following result −

Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop
as long as a condition is true.

Syntax

do {

}
while (condition);

Example

The following example will increment the value of i at least once, and it will continue
incrementing the variable i as long as it has a value of less than 10 −

Live Demo
<html>
 <body>

 <?php

while($i < 10) {
$num--;
$i++;

}

http://tpcg.io/tsLS0l
http://tpcg.io/glAjbK

Notes by: - Rajan Shukla

 $i = 0;
 $num = 0;

 do {
 $i++;
 }

 while($i < 10);
 echo ("Loop stopped at i = $i");
 ?>

 </body>
</html>

This will produce the following result −

Loop stopped at i = 10

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current
array element is assigned to $value and the array pointer is moved by one and in the next pass
next element will be processed.

Syntax

foreach (array as value) {

}

Example

Try out following example to list out the values of an array.

Live Demo

<html>
 <body>

 <?php
 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {
 echo "Value is $value
";

}
?>

 </body>
</html>

code to be executed;

http://tpcg.io/FA1hw2

Notes by: - Rajan Shukla

This will produce the following result −

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. It gives you full control and
whenever you want to exit from the loop you can come out. After coming out of a loop
immediate statement to the loop will be executed.

Example

In the following example condition test becomes true when the counter value reaches 3 and
loop terminates.

Live Demo
<html>
 <body>

 <?php
 $i = 0;

while($i < 10) {

$i++;
if($i == 3)break;

}

Value is 1
Value is 2
Value is 3
Value is 4
Value is 5

http://tpcg.io/dQeDDw

Notes by: - Rajan Shukla

 echo ("Loop stopped at i = $i");
 ?>

 </body>
</html>

This will produce the following result −

Loop stopped at i = 3

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not
terminate the loop.

Just like the break statement the continue statement is situated inside the statement block
containing the code that the loop executes, preceded by a conditional test. For the pass
encountering continue statement, rest of the loop code is skipped and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true it
just skip the code and next value is printed.

Live Demo
<html>
 <body>

 <?php
 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {
 if($value == 3)continue;
 echo "Value is $value
";
 }

http://tpcg.io/Maa3wb

Notes by: - Rajan Shukla

 ?>

 </body>
</html>

This will produce the following result −

Value is 1
Value is 2
Value is 4
Value is 5

	1.1 History and Advantages of PHP, Syntax of PHP.
	1.2 Variable, Data type, expression and operators, Constants
	PHP Data Types: Compound Types
	PHP Data Types: Special Types
	PHP Boolean
	PHP Float
	PHP String
	PHP Array
	PHP object
	PHP Resource
	PHP Null
	1.3 PHP provides us with four conditional statements:
	1.4 Loop Structure in Php

